21stSPES meeting , 14th of November 2001, 54/2-0035

Maintenance Tent for TK Detector

M. Jeske (ST/CV)

- 1. Purpose of maintenance tent
- 2. Concept
- 3. Composition of mobile AC unit
- 4. Thermodynamic process
- 5. Preliminary specifications of AC unit

Purpose of Maintenance tent

During maintenance TK volume will be kept at low temperatures (0 °C) in order to:

- survive high radiation environment of the LHC
- avoid degradation of silicon wafers

 \rightarrow meeting of <u>"10 years of lifetime" requirement</u>

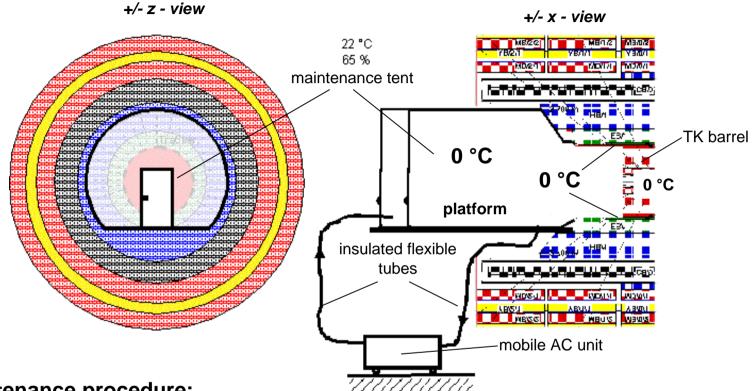
Tent provides <u>thermodynamic protection</u> against humidity and heat during maintenance periods

Access time scales for CMS

For TK Maintenance works the following access time-scales need to be taken into consideration (TDR CERN/LHCC 98-6):

SHORT TIME ACCESS (1h...3 days):

• No significance for TK


INTERMEDIATE TIME ACCESS (2...3 weeks):

- Opening of CMS endcaps
- Access to TK patch panels and endflanges

END OF YEAR SHUT- DOWN ACCESS (Nov. ... April):

- Removal of one TK endcap
- Maintenance and repair works
 - of TK endcap on surface in cold store
 - of TK barrel in situ by means of maintenance tent

Concept for TK Maintenance Tent

Maintenance procedure:

Removal of CMS endcap \rightarrow introduction of platform \rightarrow setup of tent \rightarrow connection

of AC unit \rightarrow operation until desired air condition in tent \rightarrow extraction of

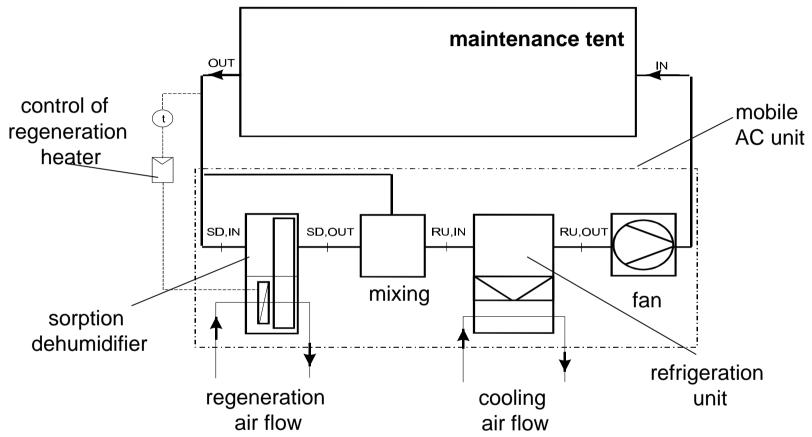
TK endcap and storage in foreseen cold area on surface \rightarrow access to and maintenance of TK barrel

During maintenance:

Tent, TS and TK barrel volume are kept at 0 °C \Rightarrow thermodynamically neutral atmosphere / environment for TK 14/11/01

Requirements and preliminary assumptions

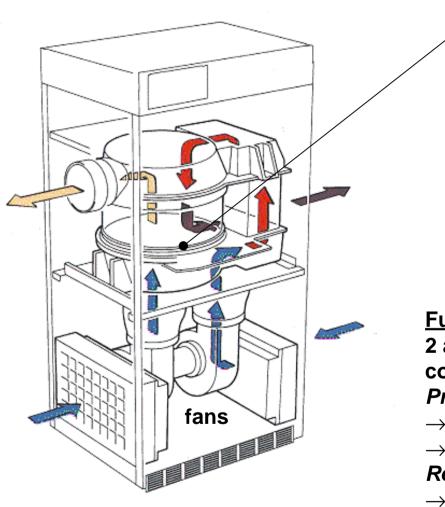
- 1. No heat loads for TK barrel and endcap $\rightarrow t_{TS}, t_{tent} = t_{TK;surface}$ (thermodynamically neutral environment !)
- 2. No condensation/frosting on TK surface $\rightarrow t_{dew,tent} < t_{TK,surface} = 0 \ ^{\circ}C$
- 3. No condensation on outer surface of tent and flexible tubes \rightarrow t tent, outer surface, t tubes, outer surface > t dew, ambient air

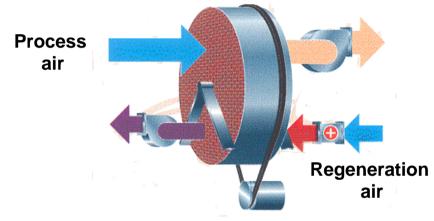

Air conditions

cavern: 22 °C, 65 % \Rightarrow t dew = 15 °C tent: 0 °C, 40 % \Rightarrow t dew = - 11 °C

Tent Dimensions

height/length: 4,5 m / 5,5 m


Composition of Mobile AC Unit


Mobile AC unit:

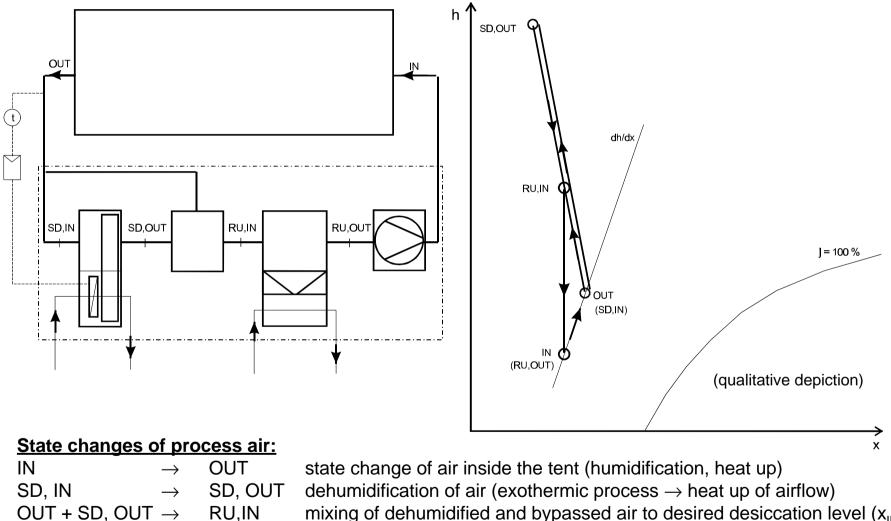
- closed housing containing all relevant components (dehumidifier, refrig. unit, filter, fan, rotor drive, etc.)
- main switch (MAN/AUTO), basic controls and displays (NET/OPERATION/FAILURE) allow easy external operation 14/11/01 6

Example of Standard Sorption Dehumidifier

Sorption rotor: composed of large number of small channels impregnated with sorptive agent

Functional principle:

2 airflows passing through the rotor continuously:


Process air

- \rightarrow charging of rotor with water molecules
- \rightarrow dehumidification

Regeneration air

- \rightarrow drying of rotor
- \rightarrow humidification

Thermodynamic process in Mollier h,x-diagram

mixing of dehumidified and bypassed air to desired desiccation level (x_{IN}) cooling of air down to desired supply temperature (t_{IN})

14/11/01

RU,OUT

 \rightarrow

RU,IN

Preliminary specifications and cost of AC unit

Housing: zinc coated steel plates with supply/return plugs

Dimensions: ~ 1000 x 500 x 500 mm

Weight: ~ 60 kg

Approx. cost: ~ 50 000 CHF

Option/suggestion:

Usage of mobile AC unit as maintenance device for other purposes (e.g. desiccation of humid components, thermodynamic protection of components)