High Expansion Foam System Requirements for CMS and ATLAS

General rules according ti NFPA 11A and Règle APSAD R12:

1)	All piping to each foam generator shall be subjected to a 2-hours hydrrostatic test at 200psi or 50 psi in excess of the maximum pressure anticipated, wichever is greater.(NFPA 11A- 1-8.4.2)
2)	Inspection and tests at least annually by a competent engineer inspector.(NFPA 11A- 1-13.1)
3)	The minimum total depth of foam shall be not less than 1.1 times the heigh of the highest hazard but in no case less than 0.6 m over this hazard. (NFPA 11A- 2-3.2.1). In our case we will take 1.1
4)	Compensation factor (C_N) for normal foam shrinkage shall be 1.15 (NFPA 11A- 2-3.5.2) if no other experimental values are available, but from J.Fivet tests we got a factor C_N = 1.4
5)	Compensation factor (C_d) for foam destruction by heat and smoke (this comes from CERN tests on polluted air at the fan inlet that can destroy the growing bubble of foam) shall be: 1.2
6)	Compensation factor (C_L) for loss of foam 1.2 (NFPA 11A- 2-3.5.2) for ATLAS that has a big free volume inside the muon chambers. For CMS previous calculations did not considered the trenches underneeth the detector and took this factor equal to 1! I think also CMS should take 1.2
7)	The maximum flooding time should not exceed: 10 min

According to those rules the total flow rate of foam needed should be calculated by the following equation:

D=(V/t)*C_N*C_d*C_L

CMS

Total Cavern volume	
Volume above the fire denger height(25m*50m*2m)	
Detector volume	
Volume to be filled	

Foam Flow rate: D=(19000/10)*1.4*1.2*1.2

D= 3326.4 m³/min

Most common High Expansion Foam have an expansion factor of

Therefore the before the generation of the foam the flow rate should be of:

332.64 m³/h

600

25000 m³ 2500 m³ 6000 m³ **16500** m³

ATLAS

m ³
m ³
m³

Foam Flow rate: D=(19000/10)*1.4*1.2*1.2

D= 3640.1 m³/min

Most common High Expansion Foams have expansion factor of : 600

Therefore the before the generation of the foam the flow rate should be of:

364.01 m³/h

Water flow rate needed

The various firme are usually working with proportioning ratio ranging between 2 and 3 %. This is the percent of concentrated foam liquid in water. Considering the most critical case (2%) that is the one requiring the largest amount of water we come to: the following flow rates needed :

CMS: 325.99 m³/h ATLAS: 356.73 m³/h

Pressures needed

The highest the pressure is the best it is! A pressure of 8 bar at the inlet of each foam generator seems to be the best compromise for most of the firms but can fulfil our flow rates requirements also with 6 bar. Others firms are requiring a maximal pressure of 6 bar.

SOLUTIONS 1) If the water comes from the surface the 100 m water column give enough pressure to provide the solution at 8 bar If the LHC uncutted line is provided at 6 bar but in the underground a pump is needed.

Pressure drop Calculation for solution 1):

ATLAS:	6 bar driving pressure in the water line. -1 bar of pressure drop between inlet and outlet of the bladder (still to be decided if it will be in SD1 or US15)
	 -0.4 bar of pressure in 120m (from surface to underground) of 300mm (ID) pipe (already installed!) 9 bar of hydrostatic pressure on 90m of fall
	-2 bar of pressure drop in 30m of 170mm pipe between the bladder (or 300mm pipe in US15) and the branching in UX15.
	-3.3 bar of pressure drop in each one of the two branches of different diameter to have equal flow in the two lines. Each line is 30 m long and the pipes diameter is 120mm.
	-1.3 bar in the two final sections. Each one of these section is composed by a main pipe (20m of 110 mm pipe) and the four branches feeding the blowers (two/corner, 2m long and 80 mm)
TOTAL	7 bar at each fan inlet